Timescale Architecture for Real-Time Analytics

Michael J. Freedman

Timescale, Inc.

Abstract

Timescale provides a powerful application database for real-
time analytics on time-series data. It integrates seamlessly
with the PostgreSQL ecosystem and enhances it with auto-
matic time-based partitioning, hybrid row-columnar storage,
and vectorized execution—enabling high-ingest performance,
sub-second queries, and full SQL support at scale.

By making use of incrementally updated materialized
views and advanced analytical functions, Timescale reduces
compute overhead and improves query efficiency. Develop-
ers can continue using familiar SQL workflows and tools,
while benefiting from a database purpose-built for fast, scal-
able analytics.

Timescale combines TimescaleDB, an open-source Post-
greSQL extension, and Timescale Cloud, a cloud-native data-
base service. This document outlines the architectural choices
and optimizations that power Timescale’s performance and
scalability while preserving PostgreSQL’s reliability and
transactional guarantees.

1 Introduction
1.1 What is real-time analytics?

Real-time analytics enables applications to process and query
data as it is generated and as it accumulates, delivering
immediate and ongoing insights for decision-making. Un-
like traditional analytics, which relies on batch processing
and delayed reporting, real-time analytics supports both in-
stant queries on fresh data and fast exploration of historical
trends—powering applications with sub-second query per-
formance across vast, continuously growing datasets.
Many modern applications depend on real-time analytics
to drive critical functionality. For example: (1) IoT monitor-
ing systems track sensor data over time, identifying long-
term performance patterns while still surfacing anomalies
as they arise. This allows businesses to optimize mainte-
nance schedules, reduce costs, and improve reliability. (2)
Financial and business intelligence platforms analyze both
current and historical data to detect trends, assess risk, and
uncover opportunities—from tracking stock performance
over a day, week, or year to identifying spending patterns
across millions of transactions. (3) Interactive customer dash-
boards empower users to explore live and historical data in a
seamless experience—whether it’s a SaaS product providing
real-time analytics on business operations, a media platform

James Blackwood-Sewell

Timescale, Inc.

analyzing content engagement, or an e-commerce site sur-
facing personalized recommendations based on recent and
past behavior.

Real-time analytics isn’t just about reacting to the latest
data, although that is critically important. It’s also about de-
livering fast, interactive, and scalable insights across all your
data, enabling better decision-making and richer user expe-
riences. Unlike traditional ad-hoc analytics used by analysts,
real-time analytics powers applications—driving dynamic
dashboards, automated decisions, and user-facing insights
at scale.

To achieve this, real-time analytics systems must meet
several key requirements:

o Low-latency queries ensure sub-second response
times even under high load, enabling fast insights
for dashboards, monitoring, and alerting.

e Low-latency ingest minimizes the lag between when
data is created and when it becomes available for anal-
ysis, ensuring fresh and accurate insights.

e Data mutability allows for efficient updates, correc-
tions, and backfills, ensuring analytics reflect the most
accurate state of the data.

e Concurrency and scalability enable systems to han-
dle high query volumes and growing workloads with-
out degradation in performance.

o Seamless access to both recent and historical data
ensures fast queries across time, whether analyzing
live, streaming data, or running deep historical queries
on days or months of information.

e Query flexibility provides full SQL support, allowing
for complex queries with joins, filters, aggregations,
and analytical functions.

1.2 Timescale: Real-time analytics from PostgreSQL

Timescale is a high-performance database that brings real-
time analytics to applications. It combines fast queries, high
ingest performance, and full SQL support—all while ensur-
ing scalability and reliability. Timescale extends PostgreSQL
with the TimescaleDB extension. It enables sub-second queries
on vast amounts of incoming data while providing optimiza-
tions designed for continuously updating datasets.

Timescale achieves this through the following optimiza-
tions:

o Efficient data partitioning: Automatically and trans-
parently partitioning data into chunks, ensuring fast

queries, minimal indexing overhead, and seamless
scalability

o Row-columnar storage: Providing the flexibility of
a row store for transactions and the performance of a
column store for analytics

o Optimized query execution: Using techniques like
chunk and batch exclusion, columnar storage, and
vectorized execution to minimize latency

e Continuous aggregates: Precomputing analytical re-
sults for fast insights without expensive reprocessing

e Cloud-native operation: Compute/compute separa-
tion, elastic usage-based storage, horizontal scale out,
data tiering to object storage

e Operational simplicity Offering high availability,
connection pooling, and automated backups for reli-
able and scalable real-time applications

With Timescale, developers can build low-latency, high-
concurrency applications that seamlessly handle streaming
data, historical queries, and real-time analytics while lever-
aging the familiarity and power of PostgreSQL.

2 Data model

Today’s applications demand a database that can handle real-
time analytics and transactional queries without sacrificing
speed, flexibility, or SQL compatibility (including joins be-
tween tables). TimescaleDB achieves this with hypertables,
which provide an automatic partitioning engine, and hy-
percore, a hybrid row-columnar storage engine designed to
deliver high-performance queries and efficient compression
(up to 95%) within PostgreSQL.

2.1 Efficient data partitioning

TimescaleDB provides hypertables (Figure 1), a table abstrac-
tion that automatically partitions data into chunks in real
time (using time stamps or incrementing IDs) to ensure fast
queries and predictable performance as datasets grow. Unlike
traditional relational databases that require manual parti-
tioning, hypertables automate all aspects of partition man-
agement, keeping locking minimal even under high ingest
load.

At ingest time, hypertables ensure that PostgreSQL can
deal with a constant stream of data without suffering from
table bloat and index degradation by automatically parti-
tioning data across time. Because each chunk is ordered by
time and has its own indexes and storage, writes are usu-
ally isolated to small, recent chunks—keeping index sizes
small, improving cache locality, and reducing the overhead
of vacuum and background maintenance operations. This
localized write pattern minimizes write amplification and
ensures consistently high ingest performance, even as total
data volume grows.

Hypertables
chunk_time_interval = "1 day”

Normal table Hypertable
time value time value
Chunk D1
2025-01-02 00:00:00 36
2025-01-02 00:00:00 36
2025-01-02 06:00:00 5§ —
2025-01-02 06:00:00 5
2025-01-02 23:00:00 29
2025-01-02 23:00:00 29
Chunk D 2
2025-01-03 00:00:00 7 2025-01-03 00:00:00 17
2025-01-03 06:00:00 8 —> 2025-01-03 06:00:00 8
2025-01-08 23:00:00 6 2025-01-03 23:00:00 6
ChunkID 3
2025-01-04 00:00:00 41 2025-01-04 00:00:00 4
N
2025-01-04 06:00:00 4 2025-01-04 06:00:00 14
2025-01-04 23:00:00 5 2025-01-04 23:00:00 5

Figure 1. Hypertables automatically partition data into dis-
joint chunks along a primary column (typically a timestamp
or monotonic ID), allowing for efficient data management.

At query time, hypertables efficiently exclude irrelevant
chunks from the execution plan when the partitioning col-
umn is used in a WHERE clause. This architecture ensures
fast query execution, avoiding the gradual slowdowns that
affect non-partitioned tables as they accumulate millions of
rows. Chunk-local indexes keep indexing overhead minimal,
ensuring index operations scans remain efficient regardless
of dataset size.

Hypertables are the foundation for all of TimescaleDB’s
real-time analytics capabilities. They enable seamless data
ingestion, high-throughput writes, optimized query execu-
tion, and chunk-based lifecycle management—including au-
tomated data retention (drop a chunk) and data tiering (move
a chunk to object storage).

2.2 Row-columnar storage

Traditional databases force a trade-off between fast inserts
(row-based storage) and efficient analytics (columnar stor-
age). TimescaleDB’s storage engine, hypercore, eliminates
this trade-off, allowing real-time analytics without sacrific-
ing transactional capabilities.

Hypercore dynamically stores data in the most efficient
format for its lifecycle (Figure 2):

e Row-based storage for recent data: The most recent
chunk (and possibly more) is always stored in the row-
store, ensuring fast inserts, updates, and low-latency
single record queries. Additionally, row-based storage
is used as a write through for inserts and updates to
columnar storage.

e Columnar storage for analytical performance: Chunks

are automatically compressed into the columnstore,
optimizing storage efficiency and accelerating analyt-
ical queries.

Unlike traditional columnar databases, hypercore allows
data to be inserted or modified at any stage, making it a

Hypertable with hypercore enabled

sensor-id-1 , timestamp-1.,

status-1., value-1

sensor-id-2

, timestamp-2

, status-2.,

value-2

sensor-id-3

, timestamp-3..,

status-3

, value-3

sensor-id-4 , timestamp-4

, status-4.,

value-4

\
(
Rowstore ‘
\
\

Automatic
columnization

sensor-id
[1000 values]

[1000 values]

timestamp

[1000 values]

[1000 values]

status
[1000 values]

[1000 values]

value
[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

Columnstore
[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]
[1000 values]

(1000 values]

[1000 values]
[1000 values]

(1000 values]

[1000 values]
[1000 values]

(1000 values]

[1000 values]
[1000 values]

[1000 values]

(1000 values]

(1000 values]

(1000 values]

[1000 values]

Time

Rowstore chunk Columnstore chunk ORDERBY time |

id time value i time value

1 2025-01-0100:00 101 1, 7] [2025-01-0100:00, 101, Cachbateh
Lo {;] {;ggg;g;;ggggg; ” H el
3 202501010000 01 P storing their columns
) seorot000s 208 comersen | [[ac-3 contiguously as arrays.
3 2025-01-0100:05 01 [-1LC UL~

1 2025-01-0100:05 100 [-1C -1

2 2025-01-0100:0 200)

3 2025-01-0100:0 05

1 2025-01-0100:10 109

2 2025-01-010020 210

1 2025-01-010020 100

(a) When converting a hypertable chunk to a columnstore, batches
of rows (typically up to 1000) are rewritten as columnar array and
compressed with type-specific compression algorithms.

Figure 2. With hypercore, recent chunks can remain in
rowstore format, while chunks covering older ranges are
automatically converted into columnar format.

flexible solution for both high-ingest transactional workloads
and real-time analytics—within a single database.

2.3 Columnar storage layout

TimescaleDB’s columnar storage layout optimizes analytical
query performance by structuring data efficiently on disk, re-
ducing scan times, and maximizing compression rates. Unlike
traditional row-based storage, where data is stored sequen-
tially by row, columnar storage organizes and compresses
data by column, allowing queries to retrieve only the neces-
sary fields in batches rather than scanning entire rows. But
unlike many column store implementations, TimescaleDB’s
columnstore supports full mutability—inserts, upserts, up-
dates, and deletes, even at the individual record level—with
transactional guarantees. Data is also immediately visible to
queries as soon as it is written.

Columnar batches. TimescaleDB uses columnar colloca-
tion and columnar compression within row-based storage
to optimize analytical query performance while maintain-
ing full PostgreSQL compatibility. This approach ensures
efficient storage, high compression ratios, and rapid query
execution.

A rowstore chunk is converted to a columnstore chunk
by successfully grouping together sets of rows (typically up
to 1000) into a single batch, then converting the batch into
columnar form (as shown in Figure 3a).

Each compressed batch does the following:

e Encapsulates columnar data in compressed arrays of
up to 1,000 values per column, stored as a single entry
in the underlying compressed table

Rowstore chunk Columnstorechunk ~ SEGMENTBY id
- - ORDERBY time
id time value
1 2025-01-0100:00 101 i time value
2 2025-01-010000 197 1 2025-01-0100:00, 101,
2025-01-0100:05, 100, Each batch compresses
3 2025-01-010000 O 2025-01-01 0010, 108, tpto 1000 oustre o,
2 2025-01-0100:05 208 Automatic igl:vsu; uesllrycaos\;r?'naz .
3 2025-01-0100:05 01 conversion 2 [UL
1 2025-01-0100:05 100 s [gL-1
2 2025-01-0100:10 200 v Ul-1
3 2025-01-0100:0 05
1 2025-01-0100:10 108
2 2025-01-010020 210 Batches segmentedby Batohes internally ordered
; 209501010020 100 by SEGMENTBY by ORDERBY

(b) To optimize query performance, batches of rows with a common
identifier (SEGMENTBY) are grouped and collocated together, and
ordered within batches as appropriate (ORDERBY).

Figure 3. Columnstore layout

e Uses a column-major format within the batch, en-
abling efficient scans by co-locating values of the
same column and allowing the selection of individual
columns without reading the entire batch

e Applies advanced compression techniques at the col-
umn level, including run-length encoding, delta en-
coding, and Gorilla compression, to significantly re-
duce storage footprint (by up to 95%) and improve I/O
performance.

While the chunk interval of rowstore and columnstore
batches usually remains the same, TimescaleDB can also
combine columnstore batches so they use a different chunk
interval.

This architecture provides the benefits of columnar stor-
age — optimized scans, reduced disk I/O, and improved an-
alytical performance — while seamlessly integrating with
PostgreSQL’s row-based execution model.

Segmenting and ordering data. To optimize query per-
formance, Timescale allows explicit control over how data is
physically organized within columnar storage (as shown in
Figure 3b). By structuring data effectively, queries can mini-
mize disk reads and execute more efficiently, using vectorized
execution for parallel batch processing where possible.
Timescale’s data model employs several optimizations:

INSERTS, UPDATES, DELETES, SELECTS
(routed based on partitioning column)

Hypertable
chunk_size =1day

UPDATE and DELETE UPDATE and DELETE
trigger batch trigger batoh
decompression deo

INSERTS, UPDATES, DELETES ~ SELECTS INSERTS, UPDATES, DELETES ~ SELECTS INSERTS, UPDATES, DELETES, SELECTS

Rowstore chunk
Interim rowstore chunk (westedondemer [Interim rowstore chunk ¢)| id time value
@ me @ time ° foctien 1 2025-01-0800:00 101
2 2025-01-03 00:00 19.7
3 2025-01-03 00:00 01
DECOMPRESS DECOMPRESS 2 2025-01-03 00:05 20.8
BATCH BATCH
RE)COMPRESSION RE)COMPRESSION
FOR UPDATES, T e J, FOR UPDATES, T ! l 3 2025-01-03 00:05 o1
DELETES DELETES 1 2025-01-03 00:05 10.0
‘ Columnstore chunk SEGMENTBY id W [e? chunk TBY id ‘ e . :
id time value id time value 2 2025-01-03 00:10 200
|: :| [:I |: :| |:] 3 2025-01-03 00:10 05
[1[0-1 [10-1] 1 2025-01-03 00:10 10.9
[101 [101 2 2025-01-03 00:20 210
I: :l [:l l: :l I: :l 1 2025-01-03 00:20 10.0
2025-01-01 2025-01-02 2025-01-03

TIME

Figure 4. Hypercore supports real-time data mutability by routing inserts, updates, and deletes to transparently queryable
intermim rowstore chunks. This design allows efficient modifications without compromising analytical performance, with
compressed columnstore data only being updated during asynchronous background recompression.

o Group related data together to improve scan effi-
ciency. Organizing rows into logical segments ensures
that queries filtering by a specific value only scan rele-
vant data sections. For example, in the above, querying
for a specific ID is particularly fast. (Implemented with
SEGMENTBY.)

o Sortdata within segments to accelerate range queries.
Defining a consistent order reduces the need for post-
query sorting, making time-based queries and range
scans more efficient. (Implemented with ORDERBY.)

e Reduce disk reads and maximize vectorized exe-
cution. A well-structured storage layout enables ef-
ficient batch processing (Single Instruction, Multiple
Data, or SIMD vectorization) and parallel execution,
optimizing query performance.

By combining segmentation and ordering, Timescale en-
sures that columnar queries are not only fast but also resource-
efficient, enabling high-performance real-time analytics.

2.4 Data mutability

Traditional databases force a trade-off between fast updates
and efficient analytics. Fully immutable storage is impracti-
cal in real-world applications, where data needs to change.

Asynchronous mutability—where updates only become vis-
ible after batch processing—introduces delays that break
real-time workflows. In-place mutability, while theoretically
ideal, is prohibitively slow in columnar storage, requiring
costly decompression, segmentation, ordering, and recom-
pression cycles.

Hypercore navigates these trade-offs with a hybrid ap-
proach that enables immediate updates without modifying
compressed columnstore data in place, as shown in Figure 4.
By staging changes in an interim rowstore chunk, hyper-
core allows updates and deletes to happen efficiently while
preserving the analytical performance of columnar storage.

Real-time writes without delays. All new data which is
destined for a columnstore chunk is first written to an interim
rowstore chunk, ensuring high-speed ingestion and immedi-
ate queryability. Unlike fully columnar systems that require
ingestion to go through compression pipelines, hypercore
allows fresh data to remain in a fast row-based structure be-
fore being later compressed into columnar format in ordered
batches as normal.
Queries transparently access both the rowstore and column-

store chunks, meaning applications always see the latest data
instantly, regardless of its storage format.

Primary partition exclusion
WHERE timestamp >= '2025-01-02 00:00’

Hypertable

chunk-1 chunk-2 chunk-3

timestamp
device_id
reading_id:
reading

timestamp
device_id device_id
reading_id reading_id:
reading reading

timestamp

2025-01-01 2025-01-02 2025-01-03

continue query with matching chunks

(a) Timescale uses primary partition exclusion to skip entire chunks
during query execution based on time filters. Only chunks whose
time range intersects the query’s WHERE clause are included, signif-
icantly improving query efficiency.

PostgreSQL indexes (on columnar)
WHERE reading_id =10

Hypertable

| chunk-1btree index | chunk-1 |

batcht (1000 rows)
batch? (1000 rows)
batch3 (1000 rows)
batch4 (1000 rows)
batch5 (1000 rows)

decompress

reading_id = 10-> batcht, row 10 required columns

(c) Timescale supports PostgreSQL-style indexes on columnstore
data. Queries use these indexes to locate specific values and decom-
press only relevant batches, enabling fast lookups and selective
scans.

Secondary partition exclusion
WHERE reading_id =10

Hypertable
chunk-1 chunk-2 chunk-3
timestamp timestamp timestamp
device_id device_id device_id
reading_id: reading_id: reading_id:
(min: 0, max 7200) (min: 7201, max 14400) (min: 14401, max 21600)

reading reading reading

continue query with matching chunks

(b) Min/max metadata enables secondary partition exclusion on
selected non-primary dimensions like reading_id. Queries skip
chunks that fall outside the filtered range, further narrowing the
data scanned and reducing query latency.

Batch-level filtering (using SEGMENTBY and ORDERBY)
WHERE device_id = 1 AND timestamp > 2025-01-0100:30:00

Hypertable

chunk-1

batch1 (1000 rows)
device_id: 1
timestamp: (min: 2025-01-0100:00:00, max: 2025-01-0100:16:39)

batch2 (1000 rows)
device_id: 2
timestamp: (min: 2025-01-0100:00:00, max: 2025-01-0100:16:39)

decompress

batch3 (1000 rows) required columns

device_id: 1
timestamp: (min: 2025-01-01 00:16:40, max: 2025-01-0100:33:19)

batch4 (1000 rows)
device_id: 2
timestamp: (min: 2025-01-01 00:16:40, max: 2025-01-0100:33:19)

(d) Segmented and ordered batches enable fine-grained filtering
within chunks. Combined with min/max metadata for ORDERBY
columns, queries can skip entire batches and only decompress
those containing relevant values.

Figure 5. Query optimizations to skip unnecessary data.

Efficient updates and deletes without performance penal-
ties. When modifying or deleting existing data, hypercore
avoids the inefficiencies of both asynchronous updates and
in-place modifications. Instead of modifying compressed stor-
age directly, affected batches are decompressed and staged
in the interim rowstore chunk, where changes are applied
immediately.

These modified batches remain in row storage until they
are recompressed and reintegrated into the columnstore
(which happens automatically via a background process).
This approach ensures updates are immediately visible, but
without the expensive overhead of decompressing and rewrit-
ing entire chunks. This approach avoids: (1) the rigidity of
immutable storage, which requires workarounds like ver-
sioning or copy-on-write strategies; (2) the delays of asyn-
chronous updates, where modified data is only visible after

batch processing; (3) the performance hit of in-place muta-
bility, which makes compressed storage prohibitively slow
for frequent updates; and (4) the restrictions some databases
have on not altering the segmentation or ordering keys.

3 Query optimizations

Real-time analytics isn’t just about raw speed—it’s about
executing queries efficiently, reducing unnecessary work,
and maximizing performance. Timescale optimizes every
step of the query lifecycle to ensure that queries scan only
what’s necessary, make use of data locality, and execute in
parallel for sub-second response times over large datasets.

3.1 Skip unnecessary data

Timescale minimizes the amount of data a query touches,
reducing I/O and improving execution speed:

Primary partition exclusion (Figure 5a). Queries auto-
matically skip irrelevant partitions (chunks) based on the
primary partitioning key (usually a timestamp), ensuring
they only scan relevant data. Applies to both rowstore and
columnstore chunks.

Secondary partition exclusion (Figure 5b). Min/max
metadata allows queries filtering on correlated dimensions
(e.g., order_id or secondary timestamps) to exclude chunks
that don’t contain relevant data. Applies to columnstore
chunks.

PostgreSQL indexes (Figure 5c). Unlike many databases,
Timescale supports standard PostgreSQL indexes on column-
store data (B-tree and hash currently, when using the hy-
percore table access method), allowing queries to efficiently
locate specific values within both row-based and compressed
columnar storage. These indexes enable fast lookups, range
queries, and filtering operations that further reduce unnec-
essary data scans. Applies to both rowstore and columnstore
chunks.

Batch-level filtering (Figure 5d). Within each chunk, com-
pressed columnar batches are organized using SEGMENTBY
keys and ordered by ORDERBY columns. Indexes and min/max
metadata can be used to quickly exclude batches that don’t
match the query criteria. Applies to columnstore chunks.

3.2 Maximize locality

Organizing data for efficient access ensures queries are read
in the most optimal order (Figure 6), reducing unnecessary
random reads and reducing scans of unneeded data.

o Segmentation: Columnar batches are grouped using
SEGMENTBY to keep related data together, improving
scan efficiency.

e Ordering: Data within each batch is physically sorted
using ORDERBY, increasing scan efficiency (and reduc-
ing I/O operations), enabling efficient range queries,
and minimizing post-query sorting.

e Column selection: Queries read only the necessary
columns, reducing disk I/O, decompression overhead,
and memory usage.

3.3 Parallelize execution

Once a query is scanning only the required columnar data
in the optimal order, Timescale is able to maximize perfor-
mance through parallel execution. As well as using multiple
workers, Timescale accelerates columnstore query execution
by using Single Instruction, Multiple Data (SIMD) vectoriza-
tion, allowing modern CPUs to process multiple data points
in parallel.

The Timescale implementation of SIMD vectorization (Fig-
ure 7) currently supports several forms:

o Vectorized decompression, which efficiently restores
compressed data into a usable form for analysis.

Columnstore chunk SEGMENTBY id
ORDERBY time
id time value
1 2025-01-0100:00, 101,
2025-01-0100:05, 100, Each batch and column can be
2025-01-0100:10, 109, selected and decompressed
. independently
S I
@ [ar-]
L UL-1]

T T

Batches segmented by Batches internally ordered

by SEGMENTBY for by ORDERBY and contain

fast filtering min/max metadata for fast
filtering

Figure 6. Columnstore batches are segmented and ordered
using SEGMENTBY and ORDERBY keys. Each batch carries meta-
data to enable selective decompression, allowing queries to
efficiently scan and filter only the necessary data.

Vectorized operation on
columnstore chunk

|' Scan on columnstore chunk W

Compressed batches

[Vectorized decompression]

I
Arrow array per batch

Vectorized filtering

Vectorized expressions

Partial vectorized aggregate

Partials

Append

Par\]i,als

Finalize aggregate

Figure 7. Timescale employs SIMD vectorization when
processing columnar batches.

o Vectorized filtering, which rapidly applies filter condi-
tions across data sets.

o Vectorized aggregation, which performs aggregate cal-
culations, such as sum or average, across multiple data
points concurrently.

4 Accelerating queries with continuous
aggregates

Aggregating large datasets in real time can be expensive,
requiring repeated scans and calculations that strain CPU
and I/O. While some databases attempt to brute-force these
queries at runtime, compute and I/O are always finite re-
sources—leading to high latency, unpredictable performance,
and growing infrastructure costs as data volume increases.

Continuous aggregates, Timescale’s implementation of
incrementally updated materialized views, solve this by shift-
ing computation from every query run to a single, asynchro-
nous step after data is ingested (Figure 8). Only the time
buckets that receive new or modified data are updated, and
queries read precomputed results instead of scanning raw
data—dramatically improving performance and efficiency.

When you know the types of queries you’ll need ahead of
time, continuous aggregates allow you to pre-aggregate data
along meaningful time intervals—such as per-minute, hourly,
or daily summaries—delivering instant results without on-
the-fly computation.

Continuous aggregates also avoid the time-consuming and
error-prone process of maintaining manual rollups, while
continuing to offer data mutability to support efficient up-
dates, corrections, and backfills. Whenever new data is in-
serted or modified in chunks which have been materialized,
Timescale stores invalidation records reflecting that these
results are stale and need to be recomputed. Then, an asyn-
chronous process re-computes regions that include invali-
dated data, and updates the materialized results. Timescale
tracks the lineage and dependencies between continuous
aggregates and their underlying data, to ensure the continu-
ous aggregates are regularly kept up-to-date. This happens
in a resource-efficient manner, and where multiple invali-
dations can be coalesced into a single refresh (as opposed
to refreshing any dependencies at write time, such as via a
trigger-based approach).

Continuous aggregates themselves are stored in hyper-
tables, and they can be converted to columnar storage for
compression, and raw data can be dropped, reducing storage
footprint and processing cost. Continuous aggregates also
support hierarchical rollups (e.g., hourly to daily to monthly)
and real-time mode (also shown in Figure 8), which merges
precomputed results with the latest ingested data to ensure
accurate, up-to-date analytics.

This architecture enables scalable, low-latency analytics
while keeping resource usage predictable—ideal for dash-
boards, monitoring systems, and any workload with known
query patterns.

4.1 Hyperfunctions for real-time analytics

Real-time analytics requires more than basic SQL functions;
efficient computation is essential as datasets grow in size and
complexity. Timescale provides so-called hyperfunctions,

Query on Real-Time Aggregate across
pre-calculated and raw data

[I
%
A
® .
~
‘

R
N)
Materialized table L) ° ‘ ® [)

®e

' v
' '
' '
T T
Raw table D D

Oldest data

Completion threshold Latest data
Figure 8. Continuous aggregates extend PostgreSQL materi-
alized views with incremental updates and real-time merging
of raw and precomputed data, enabling fast, always-fresh
analytics.

available through the timescaledb_toolkit extension, as
high-performance, SQL-native functions tailored for time-
series analysis. These include advanced tools for gap-filling,
percentile estimation, time-weighted averages, counter cor-
rection, and state tracking, among others.

A key innovation of hyperfunctions is their support for
partial aggregation, which allows Timescale to store inter-
mediate computational states rather than just final results.
These partials can later be merged to compute rollups ef-
ficiently, avoiding expensive reprocessing of raw data and
reducing compute overhead. This is especially effective when
combined with continuous aggregates.

Consider a real-world example: monitoring request laten-
cies across thousands of application instances. You might
want to compute p95 latency per minute, then roll that up
into hourly and daily percentiles for dashboards or alerts.
With traditional SQL, calculating percentiles requires a full
scan and sort of all underlying data—making multi-level
rollups computationally expensive.

With Timescale, you can use the percentile_agg hyper-
function in a continuous aggregate to compute and store
a partial aggregation state for each minute. This state ef-
ficiently summarizes the distribution of latencies for that
time bucket, without storing or sorting all individual values.
Later, to produce an hourly or daily percentile, you simply
combine the stored partials—no need to reprocess the raw
latency values.

This approach provides a scalable, efficient solution for
percentile-based analytics. By combining hyperfunctions
with continuous aggregates, Timescale enables real-time sys-
tems to deliver fast, resource-efficient insights across high-
ingest, high-resolution datasets, without sacrificing accuracy
or flexibility.

Writes Reads Reads Reads

! S R

‘ Primary node

——>| Readreplica

Read replica Read replica

Horizontal read scaling

Figure 9. Timescale supports horizontal read scaling by
replicating data across read replicas. This allows analytical
workloads to be distributed across multiple nodes, isolating
them from ingest traffic and improving performance.

5 Cloud-native architecture

Real-time analytics requires a scalable, high-performance,
and cost-efficient database that can handle high-ingest rates
and low-latency queries without overprovisioning. Timescale
Cloud is designed for elasticity, enabling independent scaling
of storage and compute, workload isolation, and intelligent
data tiering,.

5.1 Independent storage and compute scaling

Real-time applications generate continuous data streams
while requiring instant querying of both fresh and historical
data. Traditional databases force users to pre-provision fixed
storage, leading to unnecessary costs or unexpected limits.
Timescale Cloud eliminates this constraint by dynamically
scaling storage based on actual usage:

e Storage expands and contracts automatically as data
is added or deleted, avoiding manual intervention.

o Usage-based billing ensures costs align with actual
storage consumption, eliminating large upfront allo-
cations.

e Compute can be scaled independently to optimize
query execution, ensuring fast analytics across both
recent and historical data.

With this architecture, databases grow alongside data
streams, enabling seamless access to real-time and historical
insights while efficiently managing storage costs.

5.2 Workload isolation for real-time performance

Balancing high-ingest rates and low-latency analytical queries
on the same system can create contention, slowing down
performance. Timescale Cloud mitigates this by allowing
read and write workloads to scale independently (Figure 9):

e The primary database efficiently handles both inges-
tion and real-time rollups without disruption.

e Read replicas scale query performance separately, en-
suring fast analytics even under heavy workloads.

This separation ensures that frequent queries on fresh data
don’t interfere with ingestion, making it easier to support
live monitoring, anomaly detection, interactive dashboards,
and alerting systems.

Hypertable

‘ Rowstore ‘

High performance

transparently query ‘
block storage

Columnstore ‘
across all data

Low cost

1 Tiered data } bottomless storage

Figure 10. Timescale transparently queries across tiered
data, spanning rowstore, columnstore, and object storage.
Recent, high-velocity data stays in fast-access storage, while
older data is compressed and tiered for cost efficiency.

5.3 Intelligent data tiering for cost-efficient
real-time analytics

Not all real-time data is equally valuable—recent data is
queried constantly, while older data is accessed less fre-
quently. Timescale Cloud can be configured to automatically
tier data to cheaper bottomless object storage (Figure 10),
ensuring that hot data remains instantly accessible, while
historical data is still available.

With such tiering, recent, high-velocity data stays in high-
performance storage for ultra-fast queries, while older, less
frequently accessed data is automatically moved to cost-efficient
object storage but remains queryable and available for build-
ing continuous aggregates.

While many systems support this concept of data cooling,
Timescale ensures that the data can still be queried from the
same hypertable regardless of its current location. For real-
time analytics, this means applications can analyze live data
streams without worrying about storage constraints, while
still maintaining access to long-term trends when needed.

5.4 Cloud-native database observability

Real-time analytics doesn’t just require fast queries—it re-
quires the ability to understand why queries are fast or
slow, where resources are being used, and how performance
changes over time. That’s why Timescale is built with deep
observability features, giving developers and operators full
visibility into their database workloads.

At the core of this observability is Insights, Timescale’s
built-in query monitoring tool. Insights captures per-query
statistics from our whole fleet in real time, showing you ex-
actly how your database is behaving under load. It tracks key
metrics like execution time, planning time, number of rows
read and returned, I/O usage, and buffer cache hit rates—not
just for the database as a whole, but for each individual query.

Insights lets you do the following:

e Identify slow or resource-intensive queries instantly;

e Spot long-term performance regressions or trends;

e Understand query patterns and how they evolve over
time;

e See the impact of schema changes, indexes, or contin-
uous aggregates on workload performance; and

o Monitor and compare different versions of the same
query to optimize execution.

All this is surfaced through an intuitive interface, available
directly in Timescale Cloud, with no instrumentation or
external monitoring infrastructure required.

Beyond query-level visibility, Timescale also exposes met-
rics around service resource consumption, compression, con-
tinuous aggregates, and data tiering, allowing you to track
how data moves through the system—and how those back-
ground processes impact storage and query performance.

Together, these observability features give you the insight
and control needed to operate a real-time analytics database
at scale, with confidence, clarity, and performance you can
trust.

6 Ensuring reliability and scalability

Maintaining high availability, efficient resource utilization,
and data durability is essential for real-time applications.
Timescale provides robust operational features to ensure
seamless performance under varying workloads.

e High-availability (HA) replicas: deploy multi-AZ HA
replicas to provide fault tolerance and ensure minimal
downtime. In the event of a primary node failure, repli-
cas are automatically promoted to maintain service
continuity.

o Connection pooling: optimize database connections by
efficiently managing and reusing them, reducing over-
head and improving performance for high-concurrency
applications.

e Backup and recovery: leverage continuous backups,
Point-in-Time Recovery (PITR), and automated snap-
shotting to protect against data loss. Restore data ef-
ficiently to minimize downtime in case of failures or
accidental deletions.

These operational capabilities ensure Timescale remains
reliable, scalable, and resilient, even under demanding real-
time workloads.

7 Conclusion

Real-time analytics is critical for modern applications, but
traditional databases struggle to balance high-ingest per-
formance, low-latency queries, and flexible data mutability.
Timescale extends PostgreSQL to solve this challenge, com-
bining automatic partitioning, hybrid row-columnar storage,
and intelligent compression to optimize both transactional
and analytical workloads.

With continuous aggregates, hyperfunctions, and advanced
query optimizations, Timescale ensures sub-second queries
even on massive datasets that combine current and historic
data. Its cloud-native architecture further enhances scalabil-
ity with independent compute and storage scaling, workload

isolation, and cost-efficient data tiering—allowing applica-
tions to handle real-time and historical queries seamlessly.
For developers, this means building high-performance,
real-time analytics applications without sacrificing SQL com-
patibility, transactional guarantees, or operational simplicity.
Timescale delivers the best of PostgreSQL, optimized for
real-time analytics.

Last updated: March 21, 2025

	Abstract
	1 Introduction
	1.1 What is real-time analytics?
	1.2 Timescale: Real-time analytics from PostgreSQL

	2 Data model
	2.1 Efficient data partitioning
	2.2 Row-columnar storage
	2.3 Columnar storage layout
	2.4 Data mutability

	3 Query optimizations
	3.1 Skip unnecessary data
	3.2 Maximize locality
	3.3 Parallelize execution

	4 Accelerating queries with continuous aggregates
	4.1 Hyperfunctions for real-time analytics

	5 Cloud-native architecture
	5.1 Independent storage and compute scaling
	5.2 Workload isolation for real-time performance
	5.3 Intelligent data tiering for cost-efficient real-time analytics
	5.4 Cloud-native database observability

	6 Ensuring reliability and scalability
	7 Conclusion

